CBSE Class 10 Maths Question Paper 2018 Solution | Q25A

CBSE Solved Question Paper 4 Mark | Equilateral Triangles

Question 25A: In an equilateral ∆ABC, D is a point on side BC such BD = \\frac{1}{3})BC. Prove that 9(AD)2 = 7(AB)2


Target Centum in CBSE 10th Maths


Free Online CBSE Coaching
online.maxtute.com

Video Explanation


NCERT Solution to Class 10 Maths


With Videos


Explanatory Answer | CBSE Class 10 Math Paper 2018 Q25A

2018 CBSE Class 10 Q25A Triangle

ABC is an equilateral triangle.
BD = \\frac{1}{3}) BC
Let the side of equilateral triangle measure 'a' units.

Draw AH perpendicular to BC.
In right triangle AHC, AH2 + HC2 = AC2
By SAS rule AHB and AHC are congruent,
HC = \\frac{1}{2}) BC = \\frac{1}{2}) a

In right triangle AHB, AH2 = AB2 - HB2
AH2 = a2 - (\\frac{1}{2}) a)2 = a2 - \\frac{1}{4}) a2 = \\frac{3}{4}) a2

In right triangle ADH, AD2 = AH2 + HD2
HD = BH - BD = \\frac{1}{2})a - \\frac{1}{3})a = \\frac{1}{6})a

∴ AD2 = \\frac{3}{4})a2 + (\\frac{1}{6})a)2 = \\frac{3}{4})a2 + \\frac{1}{36})a2
           = \\frac{27a^2 + a^2}{36}) = \\frac{28}{36})a2 = \\frac{7}{9})a2

∴ AD2 = \\frac{7}{9})(AB)2
or 9(AD)2 = 7(AB)2

 

CBSE Online Coaching | Previous Year Question Paper Class 10 Maths 2018 Video Solution


WhatsApp: WhatsApp Now
Email: learn@maxtute.com