Extra Questions For Class 10 Maths Chapter 8 | Q1

Trigonometry | Trigonometric Ratios & Pythagoras Theorem

This CBSE class 10 Maths practice question is from the topic Trigonometry. It tests you the concept of trigonometric ratios of a right triangle and pythagoras theorem.

Question 1 : Consider right triangle ABC, right angled at B. If AC = 17 units and BC = 8 units determine all the trigonometric ratios of angle C.

CBSE Class 10 Trigonometry Extra Questions -  Q1 Triangle

Target Centum in CBSE 10th Maths

Free Online CBSE Coaching

Video Explanation

NCERT Solution to Class 10 Maths

With Videos

Explanatory Answer | Trigonometry Important Questions Q1

Given Data

Length of the side BC = 8 units
Length of the side AC = 17 units

CBSE Class 10 Trigonometry Additional Practice Question Q1

Step 1: Calculate the length of AB

In Δ ABC, using Pythagoras theorem, AB = \\sqrt{AC^2− BC^2 })= \\sqrt{17^2− 8^2})
\\sqrt{289−64}) = \\sqrt{225}) ⇒ AB = 15 units .

Step 2: Calculate the trigonometric ratios of angle C

sin C = \\frac{\text{opposite side}}{\text{hypotenuse}})=\\frac{\text{AB}}{\text{AC}})= \\frac{15}{17})
cos C = \\frac{\text{adjcent side}}{\text{hypotenuse}})=\\frac{\text{BC}}{\text{AC}})= \\frac{8}{17})
tan C =\\frac{\text{opposite side}}{\text{adjcent side}}) =\\frac{\text{AB}}{\text{BC}})= \\frac{15}{8})
cot C =\\frac{\text{1}}{\text{tan ⁡C}}) =\\frac{\text{adjcent side}}{\text{opposite side}}) = \\frac{\text{BC}}{\text{AB}}) = \\frac{8}{15})
sec C = \\frac{\text{1}}{\text{cos ⁡C}}) = \\frac{\text{hypotenuse}}{\text{adjcent side}}) = \\frac{\text{AC}}{\text{BC}})= \\frac{17}{8})
cosec C = \\frac{\text{1}}{\text{sin ⁡C}}) = \\frac{\text{hypotenuse}}{\text{opposite side}}) =\\frac{\text{AC}}{\text{AB}})= \\frac{17}{15})

CBSE Online Coaching | Class 10 Maths - Trigonometry Extra Practice Questions

WhatsApp: WhatsApp Now
Email: learn@maxtute.com