Question Find the value of p, for which one root of the quadratic equation px2 – 14x + 8 = 0 is 6 times the other.
Video Explanation
Explanatory Answer
Let one of the roots be r. Therefore, the second root will be 6r.
The equation is px2 – 14x + 8 = 0
In a quadratic equation of the form ax2 + bx + c = 0, sum of roots = \\frac{-b}{a})
Sum of the roots r + 6r = 7r = \\frac{-b}{a}) = \\frac{-(-14)}{p})
i.e., 7r = \\frac{14}{p})
Or r = \\frac{2}{p}) ---------------------------(1)
In a quadratic equation of the form ax2 + bx + c = 0, product of roots = \\frac{c}{a})
Product of the roots r × 6r = 6r2 = \\frac{c}{a}) = \\frac{8}{p}) --------------------(2)
Substitute r = \\frac{2}{p}) in eqn (2)
6\{\left ( {{\frac {2} {p}}} \right )}^{2}) = \\frac{8}{p})
\\frac {24} {{p}^{2}}) = \\frac{8}{p})
Or \\frac{24}{8}) = \\frac {{p}^{2}} {p})
Or p = 3