Question 10: Rationalize the denominator of \\frac{1}{9 + {\sqrt{5} + \sqrt{6}}}\\)
\\frac{1}{9 + \sqrt{5} + \sqrt{6}})
Rationalising the denominator of this question has to be done in two stages.
In each of the stages, we will be multiplying the numerator and the denominator of the fraction with the conjugate of the denominator.
Stage 1: The conjucate of (9 + \\sqrt{5}) + \\sqrt{6})) is (9 - (\\sqrt{5}) + \\sqrt{6})))
= \\frac{1}{9 + \sqrt{5} + \sqrt{6}}) x \\frac{9 - (\sqrt{5} + \sqrt{6})}{9 - (\sqrt{5} + \sqrt{6})})
= \\frac{9 - (\sqrt{5} + \sqrt{6})}{9^2 - (\sqrt{5} + \sqrt{6})^2})
= \\frac{9 - (\sqrt{5} + \sqrt{6})}{81 - (5 + 6 + 2\sqrt{30})})
= \\frac{9 - ({\sqrt{5} + \sqrt{6}})}{70 - 2{\sqrt{30}}}\\)
Stage 2: The conjucate of (70 - 2\\sqrt{30})) is (70 + 2\\sqrt{30}))
\\frac{9 - (\sqrt{5} + \sqrt{6})}{70 - 2\sqrt{30}}) x \\frac{70 + 2\sqrt{30}}{70 + 2\sqrt{30}})
= \\frac{630 + 18\sqrt{30} - 70\sqrt{5} - 10\sqrt{6} - 70\sqrt{6} - 12\sqrt{5}} {4900 - 120}\\)
= \\frac{630 + 18\sqrt{30} - 82\sqrt{5} - 80\sqrt{6}} {4780})
Register in 2 easy steps and
Start learning in 5 minutes!
Copyrights © 2016 - 22 All Rights Reserved by Maxtute.com - An Ascent Education Initiative.
Privacy Policy | Terms & Conditions
Phone: (91) 44 4500 8484
Mobile: (91) 93822 48484
WhatsApp: WhatsApp Now
Email: learn@maxtute.com