Question 7: Simplify and find the value of
(a) \{(729)}^{\frac{1}{6}})
(b) \{(64)}^{\frac{2}{3}})
(c) \{(243)}^{\frac{6}{5}})
(d) \{(21)}^{\frac{3}{2}} × {(21)}^{\frac{5}{2}})
(e) \\frac{{(81)}^{\frac{1}{3}}}{{(81)}^{\frac{1}{12}}})
Prime factorize 729 = 3 × 3 × 3 × 3 × 3 × 3 = 36
\{(729)}^{\frac{1}{6}}) = = (3)(6/6) = 3
Rule of exponents used: = axy
Prime factorize 64 = 2 × 2 × 2 × 2 × 2 × 2 = 26
\{(64)}^{\frac{2}{3}}) = = (2)(12/3) = (2)4 = 16
Rule of exponents used: = axy
Prime factorize 243 = 3 * 3 * 3 * 3 * 3 = 35
\{(243)}^{\frac{6}{5}}) = = 36 = 729
Rule of exponents used: = axy
\{(21)}^{\frac{3}{2}} \times {(21)}^{\frac{5}{2}}) = \{(21)}^{\frac{3}{2} + \frac{5}{2}}) = \{(21)}^{\frac{8}{2}}) = 214
Rule of exponents used: (ax) × (ay) = ax + y
\\frac{{(81)}^{\frac{1}{3}}}{{(81)}^{\frac{1}{12}}}) = \{(81)}^{\frac{1}{3} - \frac{1}{12}}) = \{(81)}^{\frac{{4-1}}{12}}) = \{(81)}^{\frac{3}{12}}) = \{(81)}^{\frac{1}{4}})
Prime factorize 81 = 3 × 3 × 3 × 3 = 34
\{(81)}^{\frac{1}{4}}) = \{({3^4})}^{\frac{1}{4}}) = \{(3)}^{\frac{4}{4}}) = 3
Rule of exponents used: \\frac{a^x}{a^y}) = ax – y
Register in 2 easy steps and
Start learning in 5 minutes!
Copyrights © 2016 - 22 All Rights Reserved by Maxtute.com - An Ascent Education Initiative.
Privacy Policy | Terms & Conditions
Phone: (91) 44 4500 8484
Mobile: (91) 93822 48484
WhatsApp: WhatsApp Now
Email: learn@maxtute.com