Question 2: Factorize the given expression: 27x3 - 63x2 + 49x - \\frac{343}{27})
The given polynomial is a cubic polynomial.
Let us compare it with the standard algebraic identity (a - b)3 because the polynomial has both positive and negative terms.
(a - b)3 = a3 - 3a2b + 3ab2 - b3
Compare 27x3 - 63x2 + 49x - \\frac{343}{27}) to a3 - 3a2b + 3ab2 - b3
We can deduce that 27x3 = a3 or (3x)3 = a3
∴ a = 3x
And \\frac{343}{27}) = b3 or \\left[\frac{7}{3}\right]^3) = b3
∴ b = \\frac{7}{3})
So, 27x3 - 63x2 + 49x - \\frac{343}{27}) = (3x)3 - 3(3x)2 \\frac{7}{3}) + 3(3x)\\left[\frac{7}{3}\right]^2) - \\left[\frac{7}{3}\right]^3)
= \\left[3x - \frac{7}{3}\right]^3)
Hence, 27x3 - 63x2 + 49x - \\frac{343}{27}) factorizes as \\left[3x - \frac{7}{3}\right]\left[3x - \frac{7}{3}\right]\left[3x - \frac{7}{3}\right])
Register in 2 easy steps and
Start learning in 5 minutes!
Copyrights © 2016 - 22 All Rights Reserved by Maxtute.com - An Ascent Education Initiative.
Privacy Policy | Terms & Conditions
Phone: (91) 44 4500 8484
Mobile: (91) 93822 48484
WhatsApp: WhatsApp Now
Email: learn@maxtute.com