Extra Questions For Class 9 Maths Polynomials | Q2

NCERT Chapter 2 | Factorise Polynomials | Cubic Algebraic Identities

Question 2: Factorize the given expression: 27x3 - 63x2 + 49x - \\frac{343}{27})


Target Centum in CBSE 9th Maths


NCERT Class 9 Math Online Coaching
online.maxtute.com

Video Explanation


NCERT Solution to Class 9 Maths


With Videos


Explanatory Answer | Chapter 2 Extra Question 2

The given polynomial is a cubic polynomial.
Let us compare it with the standard algebraic identity (a - b)3 because the polynomial has both positive and negative terms.

Compare the given expression to the standard cubic algebraic identity to factorise

(a - b)3 = a3 - 3a2b + 3ab2 - b3

Compare 27x3 - 63x2 + 49x - \\frac{343}{27}) to a3 - 3a2b + 3ab2 - b3
We can deduce that 27x3 = a3 or (3x)3 = a3
∴ a = 3x

And \\frac{343}{27}) = b3 or \\left[\frac{7}{3}\right]^3) = b3
∴ b = \\frac{7}{3})

So, 27x3 - 63x2 + 49x - \\frac{343}{27}) = (3x)3 - 3(3x)2 \\frac{7}{3}) + 3(3x)\\left[\frac{7}{3}\right]^2) - \\left[\frac{7}{3}\right]^3)
= \\left[3x - \frac{7}{3}\right]^3)

Hence, 27x3 - 63x2 + 49x - \\frac{343}{27}) factorizes as \\left[3x - \frac{7}{3}\right]\left[3x - \frac{7}{3}\right]\left[3x - \frac{7}{3}\right])


WhatsApp: WhatsApp Now
Email: learn@maxtute.com