CBSE 10th Math Sample Paper 2019 | Q17 Choice 2

Section C | Trigonometric Ratios & Identities

This 2019 CBSE class 10 Maths 3 mark question is from Trigonometry. Medium difficulty 3 mark question.

Question 17B: Prove that sin θ(1 + tan θ) + cos θ(1 + cot θ) = sec θ + cosec θ


Target Centum in CBSE 10th Maths


Online CBSE Course
online.maxtute.com

Video Explanation


NCERT Solution to Class 10 Maths


With Videos


Explanatory Answer | CBSE Sample Paper Question 17 Choice 2

LHS: sin θ(1 + tan θ) + cos θ(1 + cot θ)
Substitute tan θ = \\frac{\text{sin θ}}{\text{cos θ}}) and cot θ = \\frac{\text{cos θ}}{\text{sin θ}})
= sin θ (1 + \\frac{\text{sin θ}}{\text{cos θ}}) ) + cos θ (1 + \\frac{\text{cos θ}}{\text{sin θ}}) )
= sin θ ( \\frac{\text{cos θ + sin θ}}{\text{cos θ}})) + cos θ (\\frac{\text{sin θ + cos θ}}{\text{sin θ}}) )
= (sin θ + cos θ) (\\frac{\text{sin θ}}{\text{cos θ}}) + \\frac{\text{cos θ}}{\text{sin θ}}))
= (sin θ + cos θ) (\\frac{\text{sin^2 θ + cos^2 θ}}{\text{sin θ cos θ}})) (We know sin2 θ + cos2 θ = 1)
= \\frac{\text{sin θ + cos θ}}{\text{sin θ cos θ}}) = \\frac{\text{sin θ}}{\text{sin θ cos θ}}) + \\frac{\text{cos θ}}{\text{sin θ cos θ}})
= \\frac{1}{\text{cos θ}}) + \\frac{1}{\text{sin θ}}) = sec θ + cosec θ

 

CBSE Online Coaching | Sample Question Paper Class 10 Maths 2019 Video Solution


WhatsApp: WhatsApp Now
Email: learn@maxtute.com